
SUPPLEMENTARY DISCUSSION

Functional cartography of complex metabolic networks

Roger Guimer̀a and Lúıs A. Nunes Amaral

1 Roles and blocks

Already in 1957, Nadel argued that “roles” are the central elements in the analysis of social

systems1,2, and in the 1970s White and coworkers introduced the concepts ofstructural equiv-

alenceandblockmodelto address this issue from a network perspective3,4,5,2. Two nodes are

structurally equivalent if they are connected to the same nodes3,5. Therefore, any network can

be divided into blocks of structurally-equivalent nodes in such a way that the structure of the

network issummarizedin a blockmodel by stating the relations between the blocks. Usually,

structural equivalence is too strong a requirement for a large complex network; it is very un-

likely that two nodes are connected to the exact same set of other nodes. Regular structural

equivalence6,5 relaxes this requirement by requiring that regularly equivalent nodes have identi-

cal links with otherequivalentnodes (Fig. 1). Formally, if nodesi andj are regularly equivalent

andi has a link to/from some nodek, then nodej must have a link to/from some nodel, and

nodesk andl must be, also, regularly equivalent5.

Real networks are likely to have both modular structure and block structure. This fact raises

serious concerns about the conceptual relationship between blocks and roles. Although blocks

certainly give interesting information about the overall structure of the network, simple exam-

ples, such as the one shown in Fig. 1c, demonstrate that, in general,blocks cannot be interpreted

as roles.

Motivated by this handicap of the block-scheme, we propose a new method to determine
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Figure 1: Weaknesses of the block approach to the identification of roles in modular networks.
a, Structural equivalence and blocks. The network depicted can be divided into four blocks
of structurally equivalent nodes. All nodes in block 1 are connected to each other and to all
nodes in block 2. All nodes in block 2 are connected to all nodes in blocks 1 and 3, and so
forth. b, The structure of the network can be conveniently summarized using a blockmodel
matrix. c, To illustrate the weaknesses of the blockmodel approach to the identification of roles
in modular networks, consider the network shown. Black nodes are connected to white nodes
only, and white nodes are connected to black nodes only. Therefore, black nodes are regularly
structurally equivalent to each other and white nodes are regularly structurally equivalent to
each other. An ideal block detection algorithm may thus partition the nodes into two blocks,
black and white. Significantly, this partition fails to capture the truly significant roles of the
nodes in the network. Namely, nodes A and B are the “centers” of their modules, nodes C and
D are module connectors, and all the other nodes are peripheral.d, Identification of roles based
on the “within-module degree” and the “participation coefficient” (see Methods for definitions.)

the role of a node in a complex network. Our approach is not based on the idea of blocks but

on the general idea that nodes with the same role should have similar topological properties

(Fig. 1c,d).
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Figure 2:Dependence of value of participation coefficient on total degree and fraction of within-module links.
a, P for, from top to bottom, 1/3, 0.4, 1/2, 0.6, 0.66, 0.7, 0.75, 0.8, and 0.9 of within-module links. The red
horizontal line corresponds toP = 0.8 and the dark green toP = 0.625. These results suggest thatP > 0.8
occurs only for cases in which the assignment of a node to a role is mostly a matter of chance.b, P for, from top to
bottom, 0.4, 1/2, 0.6, 0.7, 0.8, and 0.9 of within-module links. The red curve, which correspond to half of the links
within-module, converges toP = 0.75. The green curve, which correspond to 80% of the links within-module,
converges toP = 0.35.

2 Heuristic determination of a set of discrete roles

We surmise that the role of a node is defined mainly by its within-community degree and its

participation coefficient. Our definition of the roles is firstly determined by the within-module

degree. We classify nodes withz ≥ 2.5 as module hubs and nodesz < 2.5 as non-hubs. Both

hub and non-hub nodes are then more finely characterized by using the values of the participa-

tion coefficient. Simple calculations suggest that non-hub nodes can be naturally assigned into

four roles.

• Ultra-peripheral nodes(Role R1).

If a node has all its links within its module (P ≈ 0).

• Peripheral nodes(Role R2).

If a node has at least 60% its links within-module, then fork < 4 it follows thatP < 0.625
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(Fig. S2a).

• Non-hub connectors(Role R3).

If a node withk < 4 has half of its links (or at least two links, whichever is larger)

within-module, then it follows thatP < 0.8 (Fig. S2a). Thus, a plausible region for

non-hub connectors is0.62 < P < 0.8.

• Non-hub kinless nodes(Role R4).

If a node has fewer than 35% of its links within-module, it implies thatP > 0.8. We

surmise that such nodes cannot be clearly assigned to a single module. We thus classify

them as kinless nodes. We will demonstrate later that non-hub kinless nodes are found in

most network growth models, but not in real-world networks.

Similarly, hubs can be naturally assigned into three different roles:

• Provincial hubs(Role R5).

If a node with a large degree,k À 1, has at least 80% of its links within-module, then it

follows thatP = 1− (0.8)2 − (k/5)(1/k2) = 0.36− 1/(5k).

• Connector hubs(Role R6).

IF a node with a large degree has at least half of its links within module, then it follows

thatP = 1 − 1/4 − (k/2) ∗ (1/k2) = 0.75 − 1/(2k). Sincek À 1, P < 0.75 for such

nodes.

• kinless hubs(Role R7).

If a hub has fewer than half its links within-module, i.e.,P > 0.75, then we surmise that

it may not be clearly associated with a single module. We then classify it as a kinless hub.
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Figure 3: a, Values ofz andP for 26771 nodes from 16 networks, including the metabolic networks of three
organisms, the proteome ofC. elegans, the North-American airport network, the collaboration networks of chem-
ical engineers obtained from two journals (Chemical Engineering Science and AIChE Journal), the Internet at the
autonomous system level, four Erdös-Ŕenyi graphs withp = 0.004, 0.006, 0.008 and 0.010, and four Barabási-
Albert graphs withm = 1, 2, 3 and 4. b, Values ofz andP for two Barab́asi-Albert graphs with 1000 nodes
each.c, Values ofz andP for 940 nodes in the largest fully-connected component of the North-American airport
network.d, Values ofz andP for two Erd̈os-Ŕenyi graphs with 1000 nodes each.

We will demonstrate later that hubs in most network growth models are actually kinless

hubs.
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2.1 Uncertainty in node position in parameters-space

In our analysis, we estimate thez value of the intra-module degree of each node and its partic-

ipation coefficient. Since, we have access to these networks at a single moment in time, it is

plausible to assume that the values we measure forz andP for a given node are not error-free.

To take this uncertainty into consideration, we assign to each node a Gaussian peak with spe-

cific widthsσz andσP . Figure S4 show the spread of the Gaussian peaks for two values of these

parameters.

In order to obtain as complete as possible a picture of how the nodes in a given network

might populate thezP parameters-space, we calculatez andP values for all the nodes in a

large number of networks. Specifically, we obtain these values for (i) the metabolic networks of

three organisms, (ii) the proteome ofC. elegans, (iii) the North-American airport network, (iv)

the collaboration networks of chemical engineers as defined by publications in two different

journals, (v) the Internet at the autonomous-system level. Additionally, we obtain these values

for nodes in model networks generated by the Barabási-Albert network growth model and the

Erdös-Ŕenyi model. In all, we consider in our analysis 26,771 nodes. We plot the density
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Figure 4:Gaussian peak decay for a single node as a function of the peak width. Note that the scale is logarithmic
Node density fora, σP = 0.03, andb, σP = 0.08. In both cases,σz = 10σP .
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Figure 5: Density landscape for the nodes belonging to 8 real-world networks and 8 model networks. Due to
the fact that more than 98% of the nodes havez < 2.5, one finds that the density landscape forz > 2.5 is quite
“washed” down by the background of the non-hub region. For this reason, we obtain the density landscape under
two distinct conditions:a, In the first, we weigh each hub with a weight of one.b, In the second, we weigh each
hub with a weight of five.

landscape obtained for these nodes withσP = 0.035 in Fig. S5.

2.2 “Basins of attraction” for non-hub nodes

One can see the probability of finding a node with given values ofz andP as a density land-

scape, with high probability regions as valleys and low probability regions as peaks. Then, at

(almost) every point of the landscape, one can “follow” the gradient to reach a local minimum.

The region of the space that “flows” toward a certain minimum is what we call a “basin of

attraction.”

As discussed above, we define non-hub nodes as those withz < 2.5. We then calculate the

node density plot for different choices of the values ofσZ andσP and identify the basins of

attraction for the different node density plots (Fig. S6).

Based on the results of Figs. S2–S6, we partition thezP parameters space forz < 2.5 into

four regions with boundaries atP = 0.05, 0.62 and0.8.
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Figure 6:Basin of attraction identification for density landscapes obtained witha, σP = 0.03, b, σP = 0.035,
c, σP = 0.05, andd, σP = 0.08. Note how the values ofP identified in our simple analysis provide a good match
to the boundaries of the basins of attraction in the node density landscapes.

2.3 “Basins of attraction” for hubs

We define non-hub nodes as those withz > 2.5. We then calculate the node density plot for

different choices of the values ofσz andσP and identify the basins of attraction for the different

node density plots (Fig. S7) .

In this case the results are not as clear as for the non-hub region because of the scarcity of

data points. However, the density plot are compatible with a selection of three regions corre-

sponding to distinct roles. The boundary of these regions are atP = 0.30 and0.75.
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Figure 7:Basin of attraction identification for density landscapes obtained witha,σP = 0.03, andb, σP = 0.05.

The seven roles we identify and the corresponding regions in thezP parameters-space are

displayed in Fig. S8.
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Figure 8:Role-specific regions in thezP parameters-space.
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3 Metabolic networks

3.1 Modules in metabolic networks

Two issues related to the accuracy of the identification of modules in metabolic networks are

worth analyzing in detail. First, nodes are expected to be more densely connected to nodes in

the same module than to nodes in other modules. To quantify to which extent the algorithm

accomplishes this task, we depict the within- and between-module connectivity density, that is,

the ratio between the actual number of links and the maximum number of links within a module

and between a pair of modules (Fig. S9a). As expected, the within-module density is much

larger than the between-module density, typically 100-1000 times larger.
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Figure 9:Accuracy of the module identification algorithm.a, Connection density between and within modules.
The connection density is defined as the ratio between the actual number of links and the maximum possible
number of links. b, To test the robustness of the algorithm when applied to metabolic networks, we obtain 25
partitions of the metabolic network ofE. coli and plot, for each pair of nodes in the network, the fraction of times
that they are classified in the same module.

Second, since our module-identification algorithm is stochastic, different runs yield, in gen-

eral, different partitions of the nodes into modules. To test the robustness of the algorithm when

applied to metabolic networks, we obtain 25 partitions of the metabolic network ofE. coli and

plot, for each pair of nodes in the network, the fraction of times that they are classified in the

same module. As shown in Fig. S9b, modules are robustly and consistently identified.
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3.2 Role assignment for the metabolites in 12 organisms

We analyze the metabolic networks of 12 organisms: four archaea—P. furiosus, A. pernix, A.

fulgidus, andS. solfataricus—, four prokaryotes—E. coli, B. subtilis, L. lactis, andT. elongatus—

, and four eukaryotes—S. cerevisiae, C. elegans, P. falciparum, andH. sapiens.
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Figure 10:Metabolite role determination for the 12 organisms. Each metabolite is represented as a point in the
zP phase-space, and is colored according to its role.

An issue of potential concern is the accuracy of the metabolic network database. The

metabolic networks used in the paper were originally compiled by Ma and Zeng7 (MZ). These

authors carefully considered the reactions contained in the KEGG database and manually cor-
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rected inconsistencies and errors, removed current metabolites from reactions, and excluded

polymerization reactions as well as reactions with macromolecule participation. Although this

database is probably the most reliable to date8, it may be argued that it is very restrictive and

that our results may be contingent on its use.

To assess this possibility, we analyze the complete, unfiltered, KEGG database. To build the

metabolic networks, we use the data compiled in the LIGAND section of the KEGG database,

publicly available atftp://ftp.genome.ad.jp/pub/kegg/ligand/. In particular, we consider all bio-
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Figure 11:Metabolite role determination for the 12 organisms using unfiltered data from KEGG. Each metabolite
is represented as a point in thezP phase-space, and is colored according to its role.
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chemical reactions included in thereactionmain.lst file, which includes the main metabo-

lites for each reaction. Then, for each organism, we only take into account reactions that

are catalyzed by an enzyme that the organism is able to synthesize. We obtain the enzymes

necessary for each reaction from thereactionfile, and the enzymes synthesized by each or-

ganism from the organism database. For example, forE. coli the database is available at

ftp://ftp.genome.ad.jp/pub/kegg/genomes/genes/E.coli.ent.

Since the KEGG metabolic networks are not subject to manual filtering, they contain many

more metabolites and reactions than the networks in the MZ database. ForE. coli, for example,

the MZ network contains 473 nodes while the unfiltered network contains 1200 metabolites.

This difference is due to two factors. First, some metabolites, such as macromolecules, are

removed from the MZ database. Second, some reactions are also discarded, so the connectivity

of the MZ networks is smaller and the giant component of the network contains a smaller

fraction of nodes.

Remarkably, the distribution of nodes in the different regions of thezP space is similar in

networks obtained from the MZ and the unfiltered databases (Figs. S10 and S11). In particular,

roles R4 and R7 are unpopulated, and there are usually only a few connectors—both hub and

non-hub. These results are in stark contrast to those observed in some other networks (Fig. S3).

The North American airport network, for example, contains many more connector hubs than

metabolic networks (Fig. S3c), but fewer non-hub connectors. On the other hand, module-less

model networks contain many nodes in role R4—Erdös-Ŕenyi and Barab́asi-Albert networks—

and in role R7—Barabasi-Albert networks— but few ultra-peripheral nodes (Fig. S3b and d).

3.3 Node degree and metabolite conservation

We find that non-hub connector metabolites are more conserved than provincial hubs, which

have larger within-module degreez-score. This is a remarkable result and its soundness and
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Figure 12:Node degree and role conservation results.a, Comparison of role conservation for real metabolic
networks and for the corresponding randomized networks.b, Distributionp(κ) of within-module degrees for nodes
with different roles.c, Distributionp(k) of total degrees for nodes with different roles.

robustness deserve to be considered carefully.

First, it is worth pointing out that studies of other complex biological networks have stressed

the relevance of the degree of nodes. Jeong and coworkers showed that, in protein interaction

networks, nodes with high degree are more essential than those with low degree9. In our analy-

sis, then, one may expect that the total degree of a node is a key determinant of its inter-species

conservation. Our claim is, however, that not only degree but also the position—role—of the

node in the network is a crucial consideration regarding essentiallity.

To determine to which extent degree can account for the reported results, we randomize the

metabolic networks by keeping constant the degree of each node. By doing this, all connectivity

correlations are “removed” from the network, and the total degree of a node is the only relevant

property kept. In Fig. S12a, we show that the conservation pattern is significantly altered for

the randomized networks. In this case,plost(R3) > plost(R5) because nodes in R3 have lower

degree than those in R5. It is also illustrative to compare the conservation of each role in the

real and randomized networks. Roles with some connector function—R2, R3, and R6—are

more conserved in the real case than in the random case, while provincial hubs—R5—are less

conserved. Ultra-peripheral nodes are similarly conserved in the random and real networks.

The second point that needs to be checked is the following. It may be that, due to the use
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of thez-score instead of the raw degree, some low-degree nodes in very sparse modules were

classified as provincial hubs. Then, one may expect the loss rate to be large for provincial hubs

just as an artifact, because of the influence of these nodes.

We have tested this possibility and found that this is not the case. In Fig. S12b, we show

that the distributionp(κ) of within-module degrees is essentially identical for roles 1-3, with

approximately 95% of the nodes havingκ ∈ [1, 4]. In contrast, less than 1% of the nodes with

role 5 haveκ = 4 and none haveκ < 4. Similarly, if one considers the total degreek, 71%

of the nodes in role 3 havek < 5, while less than 1% of the nodes in role 5 have such small

degrees (Fig. S12c). The conclusion is therefore sound: connectors are more conserved than

provincial hubs in spite of having smaller within-module degree and smaller total degree. We

have added this discussion to the Supplementary Material.

3.4 Metabolite conservation results and role definition

In the first section of this Supplementary Information, we have analyzed the considerations

that lead to the definition of seven system-independent roles. One could, however, divide the

zP phase-space in other manners. Next, we show that the metabolite conservation results are

independent of the particular definition of roles one uses, as long as the definition of roles,

specially for non-hubs, takes into account certain fundamental considerations. This also serves

as further evidence that our definition of roles is a parsimonious definition.

Let us start by considering an alternative partition of thezP space, in which nodes are

divided, first, into three classes according to their within-module degree: anti-hubs (z < 0),

non-hubs (0 ≤ z < 2.5), and hubs (z ≤ 2.5). Then, each one of these three classes is further

subdivided into five groups according to the participation coefficient:P < 0.2, 0.2 ≤ P < 0.4,

0.4 ≤ P < 0.6, 0.6 ≤ P < 0.8, andP ≥ 0.8. This is a finer definition of roles than the one

we propose because it divides thezP phase-space into 15 regions instead of 7. In Fig. S13 we
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Figure 13:Robustness of the role conservation results. To test the robustness of our results for role-dependent
conservation of metabolites, we investigate alternative definitions of the roles. Specifically, we partition the nodes
into three grouping according to their degree: “anti-hubs” (z < 0), non-hubs (0 < z < 2.5) and hubs (z > 2.5). We
then further subdivide the nodes according to the value ofP into five equally-wide regions. Inter-species metabolite
conservation as a function of the values ofz andP for thea, MZ database and theb, unfiltered KEGG database.
We find that: (i) the results are pretty insensitive to the database used, (ii) there is a very strong dependence of
plost on the participation coefficient, and a somewhat weaker dependence onz, i.e., the degree, (iii) the seven roles
described in the manuscript fully capture the results obtained with a finer definition of the roles.

show that such a definition of the roles does not alter the main conclusions drawn in the paper.

Namely, connector nodes with low degree and high participation coefficient are systematically

and consistently more conserved than hubs with low participation coefficient. Even anti-hubs

with highP are considerably more conserved than hubs with lowP . Thus, the results obtained

from this finer partition of thezP phase-space emphasize, even more clearly, to which extent

the participation coefficient is more relevant than the degree.

Now, a relevant methodological question is: wouldanypartition of thezP phase-space yield

correct results? The answer is that, specially for non-hubs, one must be careful. Non-hubs are

nodes with low degree, and therefore integer constraints on the possible values ofP become

important. For example, as discussed in the first section of this Supporting Information and in

Fig. S2, a node with degreek = 2 can only haveP = 1 or P = 0.5.

To see how this fact potentially affects the definition of roles, consider a situation in which
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one divides the thezP space into hubs (z ≤ 2.5) and non-hubs (z < 2.5), and each of these two

classes into five groups according toP as before:P < 0.2, 0.2 ≤ P < 0.4, 0.4 ≤ P < 0.6,

0.6 ≤ P < 0.8, andP ≥ 0.8. Then, the region that includesP = 0.5 will contain many nodes

with k = 2, while the region that includesP = 0.3 will include none. Since degree also plays a

role in metabolite conservation, it may happen that nodes in the region containingP = 0.5 are

less conserved than those in the region that containsP = 0.3, but this would be entirely due to

a poor sampling of the degrees within each of the regions, and not toP itself.

In our definition of roles described in the first section, this problem is addressed by assigning

a larger range ofP to peripheral nodes (R2), in such a way that degrees are more uniformly

sampled. Other partitions of thezP space into 7 or a similar number of roles must take this into

consideration and, consequently, should be similar to our “universal roles.”
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